Illinois researchers developing new technology to assist in-home rehab care

Kim Gudeman, Coordinated Science Laboratory at Illinois

10/15/2015

In the future, the occupational therapist helping you relearn how to use a fork following a stroke might be a computer.

Prototype of a haptic-based rehab system

Prototype of a haptic-based rehab system

Researchers at the University of Illinois at Urbana-Champaign and the University of Buffalo are developing new technology that could assist stroke victims and others with occupational and physical therapy at home. The project, “Cognitive Haptic-Based Rehabilitation System for Patient-Centric Home,” is funded by the National Science Foundation at $708,000 for three years.

“When people go back home after a stroke, they are rarely monitored and often decline in abilities,” said Thenkurussi (Kesh) Kesavadas, director of the Health Care Engineering Systems Center at Illinois and a professor of industrial and enterprise systems engineering. “Our primary goal is to use very advanced technology to help people do fine-motor rehab at home.”

The research comes at a time when health care costs are driving stroke victims to reduce time spent in in-patient rehabilitation care and return home before regaining full functioning. Stroke is a leading cause of disability among American seniors, with nearly 800,000 strokes occurring each year.

Thenkurussi (Kesh) Kesavadas

Thenkurussi (Kesh) Kesavadas

Researchers in Illinois’ Coordinated Science Lab are developing a system based on haptics, the process of recognizing objects through touch. The team is working to create a low-cost model that can help enforce proper technique through exercises, which will be designed using data collected by analyzing the motion of healthy subjects. In particular, the work will target fine motor skills – which usually involves synching the hand and fingers to make small movements – over gross motor skills, which are less challenging to rehabilitate.

The system will have three main components: a hardware platform, a remote-access interface so that an off-site therapist can monitor progress and modify the therapy regimen as needed, and a brain-machine interface that allows the system to adapt itself to the patient’s level of effort based on cognitive measurement.

Ehsan Esfahani, an assistant professor of mechanical and aerospace engineering at Buffalo, says the system will evaluate patients’ progress based on whether they complete a task, the accuracy with which they perform the task, and their level of mental engagement during the treatment.

“This evaluation empowers the physician to monitor the subject’s performance during in-home therapy and allow him or her to adjust the haptic and simulation in an appropriate fashion,” Esfahani said.

The same approach could be used in other applications as well, such as helping children with dysgraphia learn how to write.

“This technology could really help assist in teaching any fine motor skill through repetition of movement,” Kesavadas said.

Illinois researchers making virtual surgery simulation a reality

Dr. Kasavadas stands with a tele-surgery robot
Kesh Kasavadas and his staff welcomed the RAVEN II robot assisted tele-surgery for tele-health, to the Health Care Engineering Systems Center.

In the same way that pilots train for actual flights through simulation the next generation of doctors will train for surgery. A group of researchers from the University of Illinois led by Professor of Industrial and Enterprise Engineering Kesh Kesavadas is at the forefront of a technology that will make that training virtual.This summer, Kesavadas and the Health Care Engineering Systems Center, welcomedRAVEN II, the Robot-Assisted Tele-Surgery for Tele-Health, to its lab. Raven will allow future doctors hands-on training in robotic surgery without the use of a patient. It’s one of the first steps that will link cutting-edge medical research already taking place on campus with the engineering-based College of Medicine, opening in 2018. Eventually Robotic surgery and training will be a major piece to the College’s $10 million Jump Simulation Center.

“Robotic surgery has been around for about 15 years, but there hasn’t been much innovation in that space largely because there has been only one company  (Intuitive Surgical Systems) with an FDA approved robot,” Kesavadas said. “Things are going to change in the next five years with new companies coming into the market. While getting FDA approval is a big challenge, the fact that they have already shown that using a robot is a fundamentally safe and practical way of doing surgery will speed up that process.”

Kesavadas’ vision is that research at Illinois will be the genesis of much of the development, and the newly acquired RAVEN is only a piece of that vision. For instance, Illinois is in its second-year of a $50 million partnership with the Jump Simulation and Education Center at OSF HealthCare in Peoria, Ill.

“In Peoria, we have a full-fledged operating room built to scale,” Kesavadas explained. “You can simulate whole procedures — robotic, laparoscopic or traditional open surgery. This allows us to go and test to see how the simulator would work inside an operating room.”

“You could put (Raven) inside the OR at the Jump Simulation Center and have a surgeon run through the whole procedure in the simulated operating room. This is the way future surgeons will be trained,” added John Vozenilek, Chief Medical Officer for Jump.

The research that Kesavadas group is working on takes that a step further and wouldn’t even require a robot for learning the basics of robotic surgery. Instead, through virtual reality and computer simulation, surgeons will be able to replicate the surgery.

“The kind of impact we are thinking is when someone comes to become a robotic surgeon,” Kesavadas said. “The simulator teaches them fundamental skills required to use a surgical robot without even needing to train on an actual robot.

Kesavadas has been working on robotic simulation for about seven years and was the inventor ofRoSS, the first stand-alone simulator for da Vinci surgical robot, currently used in training centers around the world.

“We use a mock interface to control a virtual robot,” Kesavadas said “The goal is so make a surgeon highly-skilled before they are allowed to touch a patient.”

There are two technologies that have made this type of simulation possible, according to Kesavadas. The first is virtual reality, which can simulate cutting a tissue, tying a knot and advanced engineering principles that are graphically stimulating. The second is haptics, which gives users the sensation of touching objects. For instance, a surgeon could feel tissue even though there is none.

“With computers and the new GPU based technologies, we are able to implement algorithms on a PC which would have required a supercomputer maybe 15-20 years ago,” Kesavadas said.

Urologists and gynecologists in residence are already using this robotic simulation for procedures like prostatectomies and hysterectomies using technology developed by Kesavadas.

Kesavadas is one of a half dozen Illinois faculty that is in the process of taking it to the next stage to introduce unexpected events. This spring an interdisciplinary group of Kesavadas, ProfessorRavishankar Iyer from the Coordinated Science Laboratory on campus, Zbigniew Kalbarczyk, Research Professor at CSL, Rush University surgeon Jaishankar Raman, and doctoral researchersHoma Alemzadeh (electrical and computer engineering) and Xiao Li (mechanical science and engineering), published their first paper demonstrating simulation of adverse events by using both a robot and simulator.

The FDA requires robotic surgeons to report events that have caused surgeries to be halted or where the patient has died. Their group is using those events to build an adverse event simulator. In the next year or so, the goal is to take the simulator to Peoria, to test and get feedback from doctors.

“We are looking to simulate most common unexpected events and what caused them,” Iyer said. “For example, if one of the surgical tools breaks down, what do you do? Do you stop the surgery? Prior to now, surgeons were only exposed to these events inside the operating room.”

In addition to engineers, the new College of Medicine will bring actual practitioners or doctors-in-residence to the center, which Kesavadas adds will be extremely beneficial to the development.

“The ability to have our own simulation center where we can test this with real students gives us everything,” Kesavadas said. “We don’t want to be just an engineering research center, but also want to translate research into clinical practices. The medical students can train here and give us feedback, which can improve our technology. When trainees come in, they can practice on both the robot and the virtual simulator.”

With simulation centers on campus, at Carle Foundation Hospital in Urbana (the university’s partner in the College of Medicine) and in Peoria, the University of Illinois is poised to be the epicenter of surgical simulation whether through research or practice.

“We are building a big effort to become national leaders in simulation,” Kesavadas said. “Even though others are training in robotic surgery itself, the simulation to train robotic surgery is something that we have a unique strength here. There really is no other center like this in the country. We will have access to everything a student or a fellow will be required to learn. With RAVEN and the new virtual simulator, it helps take our robotic surgery program to the next level.”

Raven was purchased with a grant through the equipment challenge grant received by Kesavadas, Rohit Bhargava, Joseph Bentsman, Naira Hovakimyan, Ravi Iyer, Lui Sha and Alex Kirlik.

Technology brings doctors, engineers together

Monday’s 2nd Health Care Engineering Systems Symposium brought engineers and doctors throughout central Illinois together to solve today’s medical issues; attendance almost doubled since last year’s symposium.  We will be sharing more information about this year’s event in the days to come, but until then please enjoy this article by Anna Carrera from IllinoisHomepage.net offering a summary of the symposium:

Technology brings doctors, engineers together

ARCHES Call for Proposals Closed

This Call for Proposals is now closed. Please look forward for the next cycle to be announced late 2015.

Request for Proposals

The Jump Applied Research for Community Health through Engineering and Simulation [Jump ARCHES] Endowment offers this Request for Proposals to members of faculty of the University of Illinois College of Engineering at Urbana-Champaign, members of faculty of the University of Illinois College of Medicine at Peoria, and/or OSF Healthcare System clinicians. The goal of this competitive grant is to improve healthcare quality and patient safety through the combined efforts of engineers and clinicians.

Deadlines

The request for Proposals Opens: CLOSED. Next cycle to be announced late 2015.
Submission Deadline: CLOSED
Proposals will be reviewed swiftly with an announcement of awards by end of 2015.
 

 

Jump Simulation Center to train future College of Medicine students with technology

by Mariah Schaefer – Daily Illini

When the Carle-Illinois College of Medicine opens its doors to students in approximately three years, a new technological facility will help prepare medical professionals for a future in a technology-driven field.

The creation of the Jump Simulation Center, which was announced in late June, was made possible by a $10 million gift from University alumnus Bill DiSomma, who owns Jump Trading, a Chicago-based trading firm.

DiSomma also helped create the Jump Trading Simulation and Education Center in Peoria, which has a partnership with the University of Illinois.

“The DiSomma Foundation was instrumental in forming the big simulation center in Peoria, and so they gave us this new, big, generous grant to start our own simulation center for the new College of Medicine here,” said Kesh Kesavadas, director of the Health Care Engineering Systems Center, who will co-direct the Urbana center with the Peoria center’s chief medical officer, John Vozenilek.

The Peoria center focuses on research in simulation and education, while the Urbana center will focus on teaching medical students through simulation.

The Jump Simulation Center will be located in the basement of Everitt Laboratory, and it will be completed by the time the first students of the College of Medicine arrive on campus in 2018. The center is now under architectural design.

“When we learned that we are going to have a new engineering-based College of Medicine, we realized very early on that having a world-class simulation facility here will be very beneficial for our college, be very beneficial for the engineering-based education that we are going to give our future physicians and doctors,” Kesavadas said.

He said the purpose of using simulation is to train medical professionals without having to use human beings all the time.

There will be several simulation technologies available to students at the center: standardized patients, mannequin-based simulators, and virtual reality simulators.

“In a simulation facility, the basic idea is that you have clinical environment that you set up; you set up like a mock ICU or a mock OR or a mock patient interaction room, and you use the simulation environment to train the students that will be future physicians,” said Rashid Bashir, head of the Department of Bioengineering.

Bashir was involved in developing the original partnership with the Jump Center in Peoria.

“Our goal is to bring in some of those engineering innovations and the research that is taking place, to bring them in to an educational environment in the simulation center to be able to expose the MDs of tomorrow, because we believe many of these technologies will be used in clinical practices in the future,” Bashir said.

Kesavadas said that the equipment available to students at the Jump Simulation Center will help prepare them to adapt to new technologies in the field.

“Students often have to learn how to use all these new modern devices, which come in the market,” Kesavadas said. “It’s very hard to train students and professionals using these devices in a hospital environment with patients, so we think that our simulation center will focus on developing new technologies so that we can test devices, and at the same time, use it for training.”

Kesavadas said that the Jump Simulation Center will not just be available to College of Medicine students. Students in the College of Engineering will also be able to use the center because it will be located in the new Department of Bioengineering building.

He said the fact that the center will be located in the engineering campus is very unique, noting that many engineering students in other universities do not have access to a simulation center because the simulation center is located in the heart of a medical campus.

“We can see that engineering students can also contribute to building the next level of simulators, can contribute in terms of working with medical students to come up with new ideas,” Kesavadas said. “We think that all this collaboration fosters much better simulator environments of the future.”

With such an emphasis on technology, the human side of medicine suffers the risk of being put aside. However, Bashir assures that that will not be the case with the College of Medicine.

He said that the curriculum will have many thematic areas, and doctor-patient interaction will be one of them.

“The idea is to make available the latest and greatest technologies to the physicians but still not lose on the patient-doctor interactions,” Bashir said. “Our goal is to use this technology to enhance the quality of the experience, not diminish it.

“At the end of the day, I think our broad goal that we want to accomplish is to provide quality health care to more people at lower costs,” he said.

Bashir said that those trained at the center will not be controlled by technology. He said that the physicians will still be the decision-makers, not the technology.

He emphasized that the College of Medicine is a partnership between Carle and the University of Illinois. He said Carle has a partnership with Parkland College to help train health care professionals and support staff.

Although the Peoria and Urbana centers have different purposes, they will coordinate. The Jump Simulation Center will train medical students and will be able to incorporate the research being done at the Jump Trading Simulation and Educational Center.

“In a way, we have a very comprehensive set of partnerships that all have their unique pieces, and they come together very well,” Bashir said.

$10 million Jump Simulation Center coming to new College of Medicine

A $10 million gift will launch the Jump Simulation Center in Urbana and help train a new type of doctor uniquely equipped to transform healthcare. The center will be part of the new College of Medicine, a partnership of Carle Health System and the University of Illinois at Urbana-Champaign, the first medical school in the nation focused from the beginning at the intersection of engineering and medicine.

The gift is the result of a growing partnership with Chicago-based Jump Trading, a financial technology firm.

“This is the first gift of this size to the new College of Medicine, and it defines what we will accomplish with a new engineering-based medical school,” said Phyllis Wise, chancellor of the University of Illinois at Urbana-Champaign.

“When the first class of students enters the medical school in 2018, they are going to be immersed in experiences that merge clinical education and engineering. We’re thrilled that the Jump Simulation Center will do exactly that from Day One.”

The Jump Simulation Center will be located in Everitt Laboratory, which will soon be renovated and become home to Illinois’ bioengineering department. Medical and engineering students will be immersed in technology-driven clinical environments at the Jump Simulation Center. They will design and learn how to use:

  • New medical devices.
  • New mobile, low-cost technologies for rural and developing areas.
  • New medical simulation tools.
  • New bio-printing and bio-fabrication techniques.

“Too often on university campuses, we talk about different disciplines working in silos, barriers separating us from valuable collaborations,” said Rashid Bashir, the head of the bioengineering department and a key member of the team that developed the plans for the new engineering-based medical school.” But we’ll have immediate proximity and constant interaction, thanks to the Jump Simulation Center. The engineers and medical students will be literally side-by-side, learning about and solving medical problems every day.”

“This new center will provide great benefit to the new College of Medicine,” said James Leonard, the chief executive officer at Carle. “Carle has been in ongoing discussions with Parkland College about a potential simulation center to support the community, and the new Jump Simulation Center at the College of Medicine, with the existing Jump Trading Simulation and Education Center in Peoria, will complete a level of synergy that will make central Illinois a destination for simulation work at all levels.”

Just last year, a $25 million gift established the Jump Applied Research for Community Health through Engineering and Simulation (Jump ARCHES), a partnership between the Jump Trading Simulation & Education Center at OSF HealthCare in Peoria and the Healthcare Engineering Systems Center in Illinois’ College of Engineering. Jump Trading also supports Jump Labs in the Illinois Research Park, where student interns work with Jump on high-performance trading, venture capitalism and ARCHES projects.

Carle Health System is the University of Illinois at Urbana-Champaign’s clinical partner in the new College of Medicine and a nationally recognized leader in high-quality, cost-effective and coordinated patient care.

The $55 million Everitt Laboratory renovation will include collaboration spaces, flexible modern classrooms and labs. This central hub for bioengineering at Illinois will help attract new faculty and enhance opportunities for the entire campus to solve grand challenges in health nationally and globally. It is also supported by a $20 million gift from The Grainger Foundation as part of the Grainger Engineering Breakthroughs Initiative.

“Locating the Jump Simulation Center in Everitt Lab emphasizes a close connection to the College of Engineering’s bioengineering department and Healthcare Engineering Systems Center – not to mention opportunities to collaborate with teachers and researchers in every imaginable field,” said Dr. John Vozenilek, the chief medical officer of Jump ARCHES in Peoria. He will co-direct the new Jump Simulation Center in Urbana with Kesh Kesavadas, the director of Illinois’ Healthcare Engineering Systems Center.

Work on Everitt Lab and the Jump Simulation Center is expected to begin in early 2016 and be complete in 2018.

Interview with Thenkurussi Kesavadas, director of the university’s Health Care Engineering Systems Center.

–Bill Bell, Executive Director for Marketing and Communications, College of Engineering at Illinois